Mihail POPA, Ion Tiginyanu


The experimental results obtained by applying PEDOT-PSS as a hole transport layer and PC61BM as a electron transport layer in perovskite solar cells with inverted planar architecture are presented in the work. These devices have reached a maximum power conversion efficiency (PCE) of about 19.27%. Solar cells in which bulk heterojunction was prepared from perovskite (CH3NH3PbI3) doped with PC61BM have registered a maximum PCE of approximately 23.59 %.


perovskite, PEDOT-PSS, PC61BM, current density, tension

Full Text:



PATEL, P. Perovskites in spotlight. In: MRS Bulletin, 2014, no.39, p.768-769.

MIYASAKA, T. Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices. In: Chem Lett., 2015, no.44(6), p.720-729.

PATHAK, S., ABATE, A., RUCKDESCHEL, P., ROOSE, B., et al. Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2. In: Adv. Funct. Mater., 2014, no.22, p.1-10.

DONG, Q., FANG, Y., SHAO, Y., MULLIGAN, P., et al. Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. In: Science, 2015, no.347(6225), p.967-970.

SHI, D., ADINOLFI, V., COMIN, R., et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. In: Science, 2015, no.347(6221), p.519-522.

IM, J.H., LEE, Ch.R., LEE, J.W., PARK, S.W., PARK, N.G. 6.5% efficient perovskite quantum dot-sensitized solar cell. In: Nanoscale, 2011, no.3, p.4088.

LEE, M.M., TEUSCHER, J., MIYASAKA, T., MURAKAMI., T.N., SNAITH, H.J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. In: Science Express, Supplementary Materials, 1228604/ DC1, Published online 4 October 2012.

JENG, J.Y., CHIANG, Y.F., LEE, M.H., PENG, S.R., GUO, T.F., CHEN, P., WEN, T.C. CH3NH3PbI3 perovskite / fullerene planar-heterojunction hybrid solar cells. In: Advanced Materials, 2013.

CONINGS, B., BAETEN, L., De DOBBELAERE, C., D’HAEN, J., MANCA, J., BOYEN, H.G. Perovskite Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. In: Advanced Materials, 2013.

STRANKS, S.D., EPERON, G.E., GRANCINI, G., MENELAOU, C., ALCOCER, M.J.P., LEIJTENS, T., HERZ, L.M., PETROZZA, A., SNAITH, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. In: Science, no.341, (2013), p.342.

YIN, W.J., SHI, T., YAN, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. In: Advanced Materials, 2014,

LIN, Q., ARMIN, A., CHANDRA, R., NAGIRI, R., BURN, P.L., MEREDITH, P. Electro-optics of perovskite solar cells. In: Nature Photonics, Published online: 1 december 2014.

JEON, N.J., Noh, J.H., KIM, Y.Ch., YANG, W.S., RYU, S., SEOK, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. In: Nature Materials, published online: 6 july 2014.

1YIN, W.J., SHI, T., YAN, Y. Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory. In: J. Phys. Chem. C, Publication Date (Web): 06 Feb. 2015.

MILICHKO, V.A., SHALIN, A.S., MUKHIN, I.S., KOVROV, A.E., KRASILIN, A.A., VINOGRADOV, A.V. BELOV, P.A., SIMOVSKII, C.R. Solar photovoltaics: current state and trends. In: Physics-Uspekhi (Advances in Physical Sciences), 2016, no.59, p.727-772.


  • There are currently no refbacks.