Prin tratament termic (TT) la temperatura de 970 K, 1070 K și 1170 K timp de 6 ore a nanocristalelor Ga2S3, suprafața acestora se acoperă cu un strat de oxid Ga2O3, structura și grosimea cărora depind de durata TT. Stratul de oxid este compus din nanoformațiuni insulare poroase, care sunt alcătuite din nanofire și nanocristalite. Dimensiunile nanocristalitelor se micșorează la majorarea temperaturii de călire de la 1070 K la 1170 K.


The heat treatment (TT) of Ga2S3 nanocrystals at temperatures of 970 K, 1070 K and 1170 K duration of 6 hours forms an oxide film of Ga2O3 on the crystal surface, the structure and thickness of which depends on the duration of heat treatment. The oxide layer consists of porous island nanoforms in the form of nanofibers and nanocrystals. The nanocrystalline size decreases with an increase in heat treatment temperature from 1070 K to 1170 K.


heat treatment, nano-porous island formations, nanowires, nanocrystallites, morphology of the semiconductor structural surface.

Full Text:



Rao Pritty, Kumar Sanjiv, Sahoo NK. Influence of boat material on the structure, stoichiometry and optical properties of gallium sulphide films prepared by thermal evaporation. In: Materials Chemistry and Physics, 2015, vol.149, no.p.164-171.

Yoon Chang-Sun, et al. Blue photoluminescence of α-Ga 2 S 3 and α-Ga 2 S 3: Fe 2+ single crystals. In: Applied physics letters, 2003, vol.83, no.10, p.1947-1949.

Luo Yongming, et al. Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route. In: Materials Science and Engineering: B, 2007, vol.140, no.1-2, p.123-127.

OGITA, M, et al. Ga2O3 thin films for high-temperature gas sensors. In: Applied Surface Science, 1999, vol.142, no.1-4, p.188-191.

Hou Yidong, et al. Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. In: Journal of Catalysis, 2007, vol.250, no.1, p.12-18.

LÓPEZ, I., et al. Study of the relationship between crystal structure and luminescence in rare-earth-implanted Ga 2 O 3 nanowires during annealing treatments. In: Journal of Materials Science, 2014, vol.49, no.3, p.1279-1285.

FILIPPO, E., et al. Single crystalline β-Ga2O3 nanowires synthesized by thermal oxidation of GaSe layer. In: Materials Research Bulletin, 2013, vol.48, no.5, p.1741-1744.

Kim Hyoun Woo, Kim Nam Ho. Formation of amorphous and crystalline gallium oxide nanowires by metalorganic chemical vapor deposition. In: Applied Surface Science, 2004, vol.233, no.1-4, p.294-298.

KUMAR, S. et al. A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique. In: Journal of Alloys and Compounds, 2014, vol.587, p.812-818.

GIRIJA, K., THIRUMALAIRAJAN, S., MANGALARAJ, D. Morphology controllable synthesis of parallely arranged single-crystalline β-Ga2O3 nanorods for photocatalytic and antimicrobial activities. In: Chemical Engineering Journal, 2014, vol.236, p.181-190.

Hwang Jih-Shang, et al. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation. In: Nanotechnology, 2013, vol.24, no.5, p.055401.

Ho Ching-Hwa, Chen Hsin-Hung. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3. In: Scientific reports, 2014, vol.4, p.6143.

BAHABRI, F.S., ORAINY, R.H. Growth and Transport Properties of some Gallium Chalcogenides from the Group M2III X3VI Semiconductor Compounds. In: Journal of King Abdulaziz University: Science, 2011, vol.148, no.634, p.1-29.

KOKH, K.A., et al. Study of Ga2S3 crystals grown from melt and PbCl2 flux. In: Materials Research Bulletin, 2016, vol.84, p.462-467.

FILIPPO, E. et al. Synthesis of β-Ga2O3 microstructures with efficient photocatalytic activity by annealing of GaSe single crystal. In: Applied Surface Science, 2015, vol.338, p.69-74.

NIETO-CABALLERO, FG, et al. β-Ga2O3 Particles Formed of a Complex Organic by Electrolysis. In: Int. J. Electrochem. Sci, 2015, vol.10, p.9742-9750.


  • There are currently no refbacks.