STRUCTURA ȘI COMPOZIȚIA ELEMENTARĂ A STRATULUI DE Ga2¬O3 PE SUBSTRAT DE Ga2S3

Veaceslav SPRINCEAN

Abstract


Nanoformațiunile din cristalite monofazice cu rețea cristalină monoclinică de oxid Ga2O3 au fost  cercetate folosind imaginile suprafeței SEM, diagramele XRD, spectrele de difuzie combinată Raman și spectrele EDS. Oxidul Ga2O3 a fost sintezat prin călire în atmosfera normală a monocristalelor Ga2S3. La temperaturi de călire de 1070 K și 1170 K se obține un strat omogen compus din nanocristalite de Ga2O3 cu rețea cristalină monoclinică. Stratul de oxid de la supra­fața eșantionului conține un surplus de oxigen și de sulf. Concentrația sulfului în unitate de arie de Ga2O3 se micșorează de la 0,13% at. până la 0,05% at. odată cu majorarea temperaturii de călire de la 970 K la 1170 K.

 

THE STRUCTURE AND THE ELEMENTAL COMPOSITION OF THE Ga2O3 LAYER ON THE SUBSTRATE OF Ga2S3

Nanostructural formations of single-phase crystallites with Ga2O3 monoclinic crystal lattice were investigated using SEM surface images, XRD patterns, Raman and EDS spectra. Ga2O3 oxide was synthesized by quenching the Ga2S3 single crystals in the normal atmosphere. At quenching temperatures of 1070 and 1170 K, a homogeneous layer of Ga2O3 nanocrystallites with monoclinic crystal lattice is formed. The oxide layer on the sample surface contains an excess of oxygen and sulfur. As the quenching temperature increases from 970 to 1170 K, the sulfur concentration per Ga2O3 surface unit decreases from 0.13 down to 0.05 at.%.


Keywords


heat treatment, nano-porous, nanowires, nanocrystallites, Ga2S3-Ga2O3 oxides.

Full Text:

PDF

References


HOSONO Hideo. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. In: Journal of Non-Crystalline Solids, 2006, vol.352, no.9-20, p.851-858.

BABAN, C, TOYODA, Y, OGITA, M. Oxygen sensing at high temperatures using Ga2O3 films. In: Thin Solid Films, 2005, vol.484, no.1-2, p.369-373.

BESLEAGA, C., et al. Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends. In: Thin Solid Films, 2012, vol.520, no.22, p.6803-6806.

Mi Yiming, Odaka Hidefumi, Iwata Shuichi. Electronic structures and optical properties of ZnO, SnO2 and In2O3. In: Japanese journal of applied physics, 1999, vol.38, no.6R, p.3453.

Cui Shujuan, et al. Room‐Temperature Fabricated Amorphous Ga2O3 High‐Response‐Speed Solar‐Blind Photodetector on Rigid and Flexible Substrates. In: Advanced Optical Materials, 2017, vol.5, no.19, p.1700454.

Hua-Feng Pang. Biuret-assisted formation of nanostructured In2O3 architectures and their photoluminescence properties. In: Journal of Luminescence, 2017, vol.182, p.8-14.

Kim Woong, Chu Kyo Seon. ZnO nanowire field‐effect transistor as a UV photodetector; optimization for maximum sensitivity. In: Physica status solidi (a), 2009, vol.206, no.1, p.179-182.

Suliman Ali Elkhidir, Tang Yiwen, Xu Liang. Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. In: Solar Energy Materials and Solar Cells, 2007, vol.91, no.18, p.1658-1662.

ZERVOS, Matthew, et al. Sn doped β-Ga2O3 and β-Ga2S3 nanowires with red emission for solar energy spectral shifting. In: Journal of Applied Physics, 2015, vol.118, no.19, p.194302.

ВОЛ, А.Е. Строение и свойства двойных металлических систем, том II. Москва: Физматиздат, 1962, с.513.

Chang Pai-Chun, et al. β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor. In: Applied physics letters, 2005, vol.87, no.22, p.222102.

Alema Fikadu, et al. Solar blind photodetector based on epitaxial zinc doped Ga2O3 thin film. In: Physica status solidi (a), 2017, vol.214, no.5, p.1600688.

BEECHEM, Th., et al. Oxidation of ultrathin GaSe. In: Applied physics letters, 2015, vol.107, no.17, p.173103.

Li Jianye, et al. Synthesis and structure of Ga2O3 nanosheets. In: Modern Physics Letters: B, 2002, vol.16, no.10n11, p.409-414.

Li Yongbo, et al. Large-scale synthesis of Ga2O3 nanoribbons by a two-step gas flow control. In: Superlattices and Microstructures, 2009, vol.46, no.4, p.585-592.

Luo Yongming, et al. Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route. In: Materials Science and Engineering: B, 2007, vol.140, no.1-2, p.123-127.

SPRINCEAN, V., et al. The structure and chemical composition of Ga2O3 oxide obtained by thermal treatment of Ga2Se3 crystals. In: 4th International Conference on Nanotechnologies and Biomedical Engineering, 2019, Springer, p.207-211.

GELLER, S. Crystal structure of β‐Ga2O3. In: The Journal of Chemical Physics, 1960, vol.33, no.3, p.676-684.

Zhang Ming-Jian, et al. Two phases of Ga2S3: promising infrared second-order nonlinear optical materials with very high laser induced damage thresholds. In: Journal of Materials Chemistry C, 2013, vol.1, no.31, p.4754-4760.

TOMAS, A., et al. X‐ray diffraction and electron microscopy studies of α‐and β‐Ga2S3. In: Physica status solidi (a), 1988, vol.107, no.2, p.775-784.

GUINIER, A, Sainte-Marie Lorrain Dorothee. X-ray Crystallography. (Book Reviews: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies). In: Science, 1963, vol.142, no.3599, p.1564.

MACHON, D., et al. High-pressure study of the β-to-α transition in Ga2O3. In: Physical Review B, 2006, vol.73, no.9, p.094125.

DOHY, D, LUCAZEAU, G, REVCOLEVSCHI, A. Raman spectra and valence force field of single-crystalline β Ga2O3. In: Journal of Solid State Chemistry, 1982, vol.45, no.2, p.180-192.

ELIAȘEVICI, M.A. Spectroscopia atomică și moleculară. București: Editura Academiei Republicii Socialiste România, 1966, p.585.

FILIPPO, Em., et al. Single crystalline β-Ga2O3 nanowires synthesized by thermal oxidation of GaSe layer. In: Materials Research Bulletin, 2013, vol. 48, no.5, p.1741-1744.

FILIPPO, Em., et al. Synthesis of β-Ga2O3 microstructures with efficient photocatalytic activity by annealing of GaSe single crystal. In: Applied Surface Science, 2015, vol.338, p.69-74.

Fu Lei, et al. Ga2O3 nanoribbons: synthesis, characterization, and electronic properties. In: Chemistry of materials, 2003, vol.15, no.22, p.4287-4291.

Chen Zhengwei, et al. The impact of growth temperature on the structural and optical properties of catalyst-free β-Ga2O3 nanostructures. In: Materials Research Express, 2016, vol.3, no.2, p.025003.

BANWELL, Colin N. Fundamentals of molecular spectroscopy. McGraw-Hill Book Company, 1973.

GALVÁN, C., et al. Structural and Raman studies of Ga2O3 obtained on GaAs substrate. In: Materials Science in Semiconductor Processing, 2016, vol.41, p.513-518.


Refbacks

  • There are currently no refbacks.