PROPRIETĂȚILE FIZICE ALE STRATURILOR DE ZnO PREPARATE PE Si PRIN METODA HIDROTERMALĂ

Simion RAEVSCHI, Leonid GORCEAC, Vasile BOTNARIUC, Tudor BRANIȘTE, Sergiu VATAVU

Abstract


Straturi subțiri, de nucleație și proprii, de ZnO au fost sintetizate pe Si prin metoda hidrotermală din soluțiile compușilor zincului folosindu-se solvenții: apă, apă + etanol, apă + metanol, apă + propanol, apă + acetonă, etanol, propanol, metanol. La prepararea straturilor de nucleație s-a folosit acetatul de zinc dihidrat, Zn(CH3COO)2·2H2O. Depunerea straturilor proprii de ZnO pe structurile nucleate a avut loc prin fierberea lor în soluție apoasă de Zn(NO3)2 + KOH. În lucrare sunt date caracterizări structurale și morfologice ale straturilor buffer obținute, fiind demonstrată eficiența stratului buffer în prepararea straturilor de GaN.

 

PHYSICAL PROPERTIES OF ZnO LAYERS PREPARED ON Si SUBSTRATES BY HYDROTHERMAL METHOD

The nucleation and proper ZnO thin layers on Si substrates were synthesized by the hydrothermal method from the solutions of zinc compounds by using different solvents such as: water, water + ethanol, water + methanol, water + propanol, water + acetone, ethanol, propanol, methanol. Dehydrated zinc acetate, Zn(CH3COO)2·2H2O, was used for the preparation of ZnO nucleation layers . The deposition of the proper ZnO layers on the nucleated structures is carried out by boiling them in the Zn(NO3)2 + KOH aqueous solution. The structural and morphological characterisations of the obtained buffer layers are given in the paper. The efficiency of ZnO buffer layer used  in the preparation of GaN layers is demonstrated as well.


Keywords


ZnO, buffer, hydrothermal method.

Full Text:

PDF

References


WATANABE, N. GaN-on-Si Technology for High-Power Tranzistors. In: NTT Technical Review, 2014, 12, no.4, p.1-6.

ZANG, K. Gallium Nitride Based HEMT Devices. In: Compound Semiconductor Materials and Devices, 2003.

WU, Y.F., KAPOLNEK, D., IBBETSON, J.P., PARIKH, P., KELLER, B.P., MISHRA, U.K. Very High Power Density AlGaN/GaN HEMT’s. In: IEEE Transaction on Electron Devices, 2001, 48, no.3, p.586-590.

KUMAR, R., AL-DOSSARY, O., KUMAR, G., UMAR, A. Zinc Oxide Nanostructures for NO2 Gas–Sensor applications. In: Nano - Micro Letters, 2015, 7, p.97-120.

BRANIŞTE, T., COBZAC, V., ABABII, P., PLEŞCO, I., RAEVSCHI, S., DIDENCU, A., MANYUK, M., NACU, V., ABABIY, I., TIGINYANU, I. Mesenchymal stem cells proliferation and remote manipulation upon exposure to magnetic semiconductor nanoparticles. In: Biotechnology Reports, 2020, 25, e00435, 5p.

BRANIŞTE, T., COBZAC, V., ABABII, P., PLEŞCO, I., RAEVSCHI, S., DIDENCU, A., MANYUK, M., NACU, V., ABABIY, I., TIGINYANU, I. The influence of semiconductor nanoparticles upon the activity of mesenchymal stem cells. In: 4th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2019. IFMBE Proceedings, vol.77. Springer, Cham, p.607-611.

TIGINYANU, I., STEVENS-KALCEFF, M., SARUA, A., BRANIŞTE, T., MONAICO, E., POPA, V., ANDRADE, H., THOMAS, J., RAEVSCHI, S., SCHULTE, K., ADELUNG, R. Self-organized three-dimensional nanostructured architectures in bulk GaN generated by spatial modulation of doping. In: ECS Journal of Solid State Science and Technology, 2016, 5, no.5, p.218-227.

БЕССОЛОВ, В.Н., ДАВЫДОВ, В.Ю., ЖИЛЯЕВ, Ю.В., КОНЕНКОВА, Е.В. МОСИНА, Г.Н., РАЕВСКИЙ, С.Д., РОДИН, С.Н., ШАРОФИДИНОВ, Ш., ЩЕГЛОВ, П.М., PARK, H.S., KOIKE, M. Хлоридная газофазная эпитаксия GaN слоев, выращенных на подложке Si (111) с AlN буферным подслоем. B: Письма в ЖТФ, 2005, 31, №.21, с.30-36.

KELLY, M.K., VAUDO, R.P., PHANSE, V.M., GÖRGENS, L., AMBACHER, O., STUTZMANN, M. Large free¬-standing GaN substrate by hydride vapor phase epitaxy and laser induced liftoff. In: Jpn. J. Appl. Phys., 1999, 38, p.L217-L219.

LUO, W., WANG, X., GUO, L., XIAO, H.., WANG, C., RAN, J., LI, J. Influence of AlN buffer layer thickness on the properties of GaN epilayer on Si (111) by MOCVD. In: Microelectronics Journal, 2008, 39, no.12, p.1710-1713.

YANG, J.H., KANG, S.M., DINH, D.V., YOON, D.H. Influence of AlN buffer layer thickness and deposition methods on GaN epitaxial growth. In: Thin Solid Films, 2009, 517, p.5057-5060.

WEI, J., ZHANG, B., WANG, G., FAN, B., LIU, Y., RAO, W., HUANG, Z., YANG, W., CHEN, T., EGAWA, T. Vertical GaN-based light emitting diodes structure on Si (111) substrate with through holes. In: Jpn. J. Appl. Phys., 2010, 59, p.072104.

HANADA, T. Basic Properties of ZnO, GaN, and Related Materials. In: Yao T., Hong SK. (eds). Oxide and Nitride Semiconductors. Advances in Materials Research, 2009, 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88847-5_1.

UMIT, O., DANIEL, H., HADIS, M. ZnO devices and applications: a review of current status and future prospects. In: Proceedings of the IEEE, 2010, 98, no.7, p.1255-1268.

KUMARI, N., PATEL, S.R., GOHEL, J.V. Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application. In: Optical and Quantum Electronics, 2018, 50, 180, https://doi.org/10.1007/s11082-018-1376-5.

HONGBO, H., ZHENGXIU, F., ZHENYU, Y., ZHAOSHEND, T. Sputtering of ZnO buffer layer on Si for GaN blur light emitting materials. In: Science in China (Series E), 2000, 43, no.1, p.55-59.

MOHANTA, P., SINGH, D., KUMAR, R., GANGULU, T., SRINIVASA, R.S., MAJOR, S.S. Effect of ZnO buffer layer thichness on the epitaxial growth of GaN by reactive magnetron sputtering. In: Thin Solid Films, 2013, 544, p.238-243.

ЛАШКОВА, Н.А., МАКСИМОВ, Ф.И., РЯБКО, А.А., БОБКОВ, А.А., МОШНИКОВ, В.А., ТЕРУКОВ, Е.И. Синтез наноструктур на основе оксида цинка для создания гетероструктурных фотоволтаических элементов. B: ФТП, 2016, 50, №9, с.1276-1282.

ПЛАХОВА, Т.В., БАРАНОВ, А.Н. et al. Влияние текстурированных затравок на морфологию и оптические свойства массивов наностержней ZnO синтезированных из раствора и газовой фазы. B: Неорганические материалы, 2012, 48, №5, с.549-556.

GHORBANI, H.R., MEHR, F.P. et al. Synthesis of ZnO Nanoparticles by Precipitation Method. In: Orient J. Chem., 2015, 31(2), http://dx.doi.org/10.13005/ojc/310281

НИКОЛАЕВА, Н.С., ИВАНОВ, В.В. и др. Синтез высокодисперсных форм оксида цинка: химическое осаждение и термолиз. В: Journal of Siberian Federal University. Chemistry, 2010, no.2, p.153-173.

MAHMOOD, M.A., JAN, S.J., SHAH, I.A., KHAN, I. Growth parameters for films of hydrothermally synthesized one-dimensional nanocrystals of zinc oxide. In: International Journal of Photoenegy, 2016, ID3153170. 12 p.

FOON, K.L., KASHIF, M., HASHIM, U., LIU, W.W. Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications. In: Ceramics International, 2014, 40, p.753-761.

KOŁODZIEJCZAK-RADZIMSKA, A., JESIONOWSKI, T., KRYSZTAFKIEWICZ, A. Obtaining zinc oxide from aqueous solutions of KOH and Zn(CH3COO)2. In: Physicochem. Probl. Miner. Process., 2010, 44, p.93-102.


Refbacks

  • There are currently no refbacks.