THE RADICAL C-H FUNCTIONALIZATION OF NATURAL COMPOUNDS

Vladilena GÎRBU

Abstract


Selective functionalization of complex scaffolds is a promising approach to increase the pharmacological profiles of natural products and their derivatives. Various C-H functionalizations of the natural compounds: azidation, halogenation, trifluoromethylation and electrochemical oxidation - will be discussed in this review.


Keywords


terpenes, C-H functionalization, azidation, oxidation, halogenation

Full Text:

PDF

References


ZARD, S.Z. Radicals in action: a festival of radical transformations. In: Organic Letter, 2017, no19(6), p.1257-1269. DOI: 10.1021/acs.orglett.7b00531, https://pubs.acs.org/doi/abs/10.1021/acs.orglett.7b00531

SCHREIBER, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. In: Science, 2000, no287, p.1964-1969. DOI: 10.1126/science.287.5460.1964, http://science.sciencemag.org/content/287/5460/1964/tab-pdf

KARIMOV, R.R., SHARMA, A., HARTWIG, F.J. Late-stage azidation of complex molecules. In: ACS Central Science, 2016, no2(10), p.715-724. DOI: 10.1021/acscentsci.6b00214, https://pubs.acs.org/doi/abs/10.1021/acscentsci.6b00214

LIN, T.S., PRUSOFF, W.H. Synthesis and biological activity of several amino analogs of thymidine. In: Journal of Medicinal Chemistry, 1978, no21, p.109-112. DOI: 10.1021/jm00199a020, https://pubs.acs.org/doi/abs/10.1021/jm00199a020

KOHN, M., BREINBAUER, R. The Staudinger ligation-a gift to chemical biology. In: Angewandte Chemie Inter¬na-tional Edition, 2004, no43, p.3106-3116. DOI: 10.1002/anie.200401744, http://onlinelibrary.wiley.com/doi/10.1002/ anie.200401744/abstract

KOLB, H.C., SHARPLESS, K.B. The growing impact of click chemistry on drug discovery. In: Drug Discovery Today, 2003, no8, p.1128-1137. DOI: 10.1016/S1359-6446(03)02933-7, https://www.sciencedirect.com/science/article/ pii/S1359644603029337?via%3Dihub.

MOLINA, P., VILAPLANA, M.J. Iminophosphoranes: useful building blocks for the preparation of nitrogen-containing heterocycles. In: Synthesis, 1994, no12, p.1197-1218. DOI: 10.1055/s-1994-25672, https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-1994-25672

STAUDINGER, J., MEYER, J. About New Organic Phosphorus Compounds III. Phosphine methylene derivatives and phosphinimines. In: Helvetica Chimica Acta, 1919, no2, p.635-646. DOI: 10.1002/hlca.19190020164. http://onlinelibrary.wiley.com/doi/10.1002/hlca.19190020164/abstract (in German).

BOYER, H. The acid-catalyzed reaction of alkyl azides upon carbonyl compounds. In: Journal of American Chemical Society, 1955, no77, p.951-954, DOI: 10.1021/ja01609a045, https://pubs.acs.org/doi/abs/10.1021/ja01609a045

AUBÉ, J., MILLIGAN, G.L. Intramolecular Schmidt reaction of alkyl azides. In: Journal of American Chemical Society, 1991, no113, p.8965-8966, DOI: 10.1021/ja00023a065, https://pubs.acs.org/doi/abs/10.1021/ja00023a065

SUNDBERG, R.J., RUSSELL, H.F., LIGON, V.W., LONG-SU, L. o-Styrylnitrene route to 2-substituted indoles. Pyrolysis of o-azidostyrenes. In: The Journal of Organic Chemistry, 1972, no37, p.719-724, DOI: 10.1021/jo00970a010, https://pubs.acs.org/doi/abs/10.1021/jo00970a010

CURTIUS, T. On hydrazoic acid (azoimide) N3H. In: Berichte der Deutschen Chemischen Gesellschaft, 1890, no23, p.3023-3033. DOI: 10.1002/cber.189002302232, http://onlinelibrary.wiley.com/doi/10.1002/cber.189002302232/abstract

BRÄSE, S., BANERT, K. Eds. Organic Azides: Syntheses and applications. Wiley: Weinheim, 2009, p.191. ISBN: 978-0-470-51998-1, https://www.wiley.com/en-us/Organic+Azides%3A+Syntheses+and+Applications-p-9780470519981

HEMETSBERGER, H., KNITTEL, D. Synthesis and thermolysis of α-azidoacrylic esters. In: Monatshefte für Chemie, 1972, no103, p.194-204. DOI: 10.1007/BF00912944, https://link.springer.com/article/10.1007/BF00912944

GRIEß, P. On a new series of bodies in which nitrogen substituted for hydrogen. In: Philosophical Transactions of the Royal Society of London, 1864, no154, p.667-731. DOI: 10.1098/rstl.1864.0018, http://rstl.royalsocietypublishing.org/ content/154/667.full.pdf+html

ZHENG, Q.-Z., FENG, P., LIANG, Y.-F., JIAO, N. Pd-catalyzed tandem C-H azidation and N-N bond formation of arylpyridines: a direct approach to pyrido[1,2-b]indazoles. In: Organic Letters, 2013, no15, p.4262-4265. DOI: 10.1021/ol402060q, https://pubs.acs.org/doi/abs/10.1021/ol402060q.

WANG, X., STUDER, A. Iodine (III) reagents in radical chemistry. In: Accounts of Chemical Research, 2017, no50(7), p.1712-1724, DOI: 10.1021/acs.accounts.7b00148, https://pubs.acs.org/doi/abs/10.1021/acs.accounts.7b00148.

DENG, Q.-H., BLEITH, T., WADEPOHL, H., GADE, L.H. Enantioselective Iron-Catalyzed Azidation of β-Keto Esters and Oxindoles. In: Journal of American Chemical Society, 2013, no135, p.5356-5359. DOI: 10.1021/ja402082p, https://pubs.acs.org/doi/10.1021/ja402082p.

HUANG, X., BERGSTEN, T.M., GROVES, J.T. Manganese-catalyzed late-stage aliphatic C–H azidation. In: Journal of American Chemical Society, 2015, no137(16), p.5300-5303. DOI: 10.1021/jacs.5b01983, https://pubs.acs.org/ doi/abs/10.1021/jacs.5b01983.

HUNAG, X., GROVES, J.T. Taming azide radicals for catalytic C-H azidation. In: ACS Catalysis, 2015, no6(2), p.751-759. DOI: 10.1021/acscatal.5b02474, https://pubs.acs.org/doi/abs/10.1021/acscatal.5b02474?hootPostID= be8b0a8fdc282a318c8858d51cada10e.

SHARMA, A., HARTWIG, J.T. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionali-za¬tion. In: Nature, 2015, no517, p.600-604. DOI: 10.1038/nature14127, https://www.nature.com/articles/nature14127.

ZHDANKIN, V.V., KUEHL, C.J., KRASUTSKY, A.P., FORMANECK, M.S., BOLZ, J.T. Preparation and chemistry of stable azidoiodinanes: 1-Azido-3,3-bis(trifluoromethyl)-3-(1H)-1,2-benziodoxol and 1-Azido-1,2-ben¬ziodoxol-3-(1H)-one. In: Tetrahedron Letters, 1994, no35(52), p.9677-9680. DOI: 10.1016/0040-4039(94)88357-2, https://www.sciencedirect.com/science/article/pii/0040403994883572.

VITA, M.V., WASER, J. Cyclic hypervalent iodine reagents and iron catalyst: the winning team for late-stage C-H azidation. In: Angewandte Chemie International Edition, 2015, no55(14), p.4436-4454. DOI: 10.1002/anie.201509073, http://onlinelibrary.wiley.com/doi/10.1002/anie.201509073/abstract.

ZHANG, X., YANG, H., TANG, P. Transition-metal-free oxidative aliphatic C-H azidation. In: Organic Letters, 2015, no17(23), p.5828-5831. DOI: 10.1021/acs.orglett.5b03001, https://pubs.acs.org/doi/abs/10.1021/acs.orglett.5b03001.

TRIPPIER, P.C. Synthetic strategies for the biotinylation of bioactive small molecules. In: Chem. Med. Chem., 2013, no8(2), p.190-203, DOI: 10.1002/cmdc.201200498, http://onlinelibrary.wiley.com/doi/10.1002/cmdc.201200498/abstract.

KÄRKÄS, M.D., PORCO, J.A. Jr., STEPHENSON, C.R.J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. In: Chemical Review, 2016, no116(17), p.9683-9747. DOI: 10.1021/acs.chemrev.5b00760, https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.5b00760.

NICHOLLS, T.P., LEONORI, D., BISSEMBER, A.C. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. In: Natural Product Reports, 2016, no33, p.1248-1254, DOI: 10.1039/C6NP00070C, http://pubs.rsc.org/en/Content/ArticleLanding/2016/NP/c6np00070c#!divAbstract.

QUINN, R.K., KÖNST, Z.A., MICHALAK, S.E., SCHMIDT, Y., SZKLARSKI, A.R., FLORES, A.R., NAM, S., HORNE, D.A., VANDERWAL, C.D., ALEXANIAN, E.J. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. In: Journal of American Chemical Society, 2016, no138(2), p.696-702. DOI: 10.1021/jacs.5b12308, https://pubs.acs.org/doi/abs/10.1021/jacs.5b12308

SCHMIDT, V.A., QUINN, R.K., BRUSOE, A.T., ALEXANIAN, E.J. Site-selective aliphatic C−H bromination using N-bromoamides and visible light. In: Journal of American Chemical Society, 2014, no136(41), p.14389-14392. DOI. 10.1021/ja508469u, https://pubs.acs.org/doi/abs/10.1021/ja508469u

KEE, C.W., CHAN, K.M., WONG, M.W. Selective bromination of sp3 C-H bonds by organophotoredox catalysis. In: Asian Journal of Organic Chemistry, 2014, no3(4), p.536-544. DOI: 10.1002/ajoc.201300169, http://onlinelibrary. wiley.com/doi/10.1002/ajoc.201300169/abstract.

ROSLIN, S., ODELL, L.R. Visible-light photocatalysis as an enabling tool for the functionalization of unactivated C(sp3)-substrates. In: European Journal of Organic Chemistry, 2017, no15, p.1993-2007. DOI: 10.1002/ejoc.201601479, http://onlinelibrary.wiley.com/doi/10.1002/ejoc.201601479/abstract

QIN, Q., JIANG, H., HU, Z., REN, D., YU, S. Functionalization of C-H bonds by photoredox catalysis. In: The chemical record, 2017, 17, p.1-22. DOI: 10.1002/tcr.201600125, http://onlinelibrary.wiley.com/doi/10.1002/ tcr.201600125/abstract

ISANBOR, C., O’HAGAN, D. Synthesis of fluorinated heterobicyclic nitrogen systems containing 1,2,4-triazine moiety as CDK2 inhibition agents. Fluorine in Medicinal Chemistry: A Review of Anti-Cancer Agents. In: Journal of Fluorine Chemistry, 2006, no127, p.303-319. DOI: 10.1016/j.jfluchem.2006.01.011, https://www.researchgate.net/ publication/244266283_Fluorine_in_Medicinal_Chemistry_A_Review_of_Anticancer_Agents.

KEE, C.W., CHIN, K.F., WONG, M.W., TAN, C.H. Selective fluorination of alkyl C-H bonds via photocatalysis. In: Chemical Communications, 2014, no50, p.8211-8214. DOI: 10.1039/C4CC01848F, http://pubs.rsc.org/en/ content/articlelanding/2014/cc/c4cc01848f#!divAbstract.

BOIKO, V.N. Aromatic and heterocyclic perfluoroalkyl sulfides. Methods of preparation. In: Beilstein Journal of Organic Chemistry, 2010, no6, p.880-921, DOI: 10.3762/bjoc.6.88, https://www.beilstein-journals.org/bjoc/articles/6/88.

GUO, S., ZHANG, X., TANG, P. Silver-mediated oxidative aliphatic C-H trifluoromethylthiolation. In: Angewandte Chemie International Edition, 2015, no54, p.4065-4069. DOI: 10.1002/anie.201411807, http://onlinelibrary.wiley.com/ doi/10.1002/anie.201411807/abstract.

WU, H., XIAO, Z., WU, J., GUO, Y., XIAO, J.C., LIU, C., CHEN, Q.Y. Direct trifluoromethylthiolation of unacti¬vated C(sp3)-H using silver(I) trifluoromethanethiolate and potassium persulfate. In: Angewandte Chemie International Edition, 2015, no54, p.4070-4074. DOI: 10.1002/anie.201411953, http://onlinelibrary.wiley.com/doi/10.1002/ anie.201411953/abstract.

CHEN, C., XU, X.H., YANG, B., QING, F.L. Copper-catalyzed direct trifluoromethylthiolation of benzylic C–H bonds via nondirected oxidative C(sp3)–H activation. In: Organic Letters, 2014, no16, p.3372-3375. DOI: 10.1021/ol501400u, https://pubs.acs.org/doi/abs/10.1021/ol501400u.

XU, C., SHEN, Q. Palladium-catalyzed trifluoromethylthiolation of aryl C–H bonds. In: Organic Letters, 2014, no16(7), p.2046-2049. DOI: 10.1021/ol5006533, https://pubs.acs.org/doi/abs/10.1021/ol5006533.

MUKHERJEE, S., MAJI, B., TLAHUEXT-ACA, A., GLORIUS, F. Visible light-promoted activation of unactivated C(sp3)–H bonds and its selective trifluoromethylthiolation. In: Journal of American Chemical Society, 2016, no138(50), p.16200-1620. DOI: 10.1021/jacs.6b09970, https://pubs.acs.org/doi/abs/10.1021/jacs.6b09970.

SATO, A., YORIMITSU, H., OSHIMA, K. O-Alkyl S-3,3-dimethyl-2-oxobutyl dithiocarbonates as versatile sulfur-transfer agents in radical C(sp3)-H functionalization. In: Chemistry – Asian Journal, 2007, no2, p.1568-1573. DOI: 10.1002/asia.200700251, http://onlinelibrary.wiley.com/doi/10.1002/asia.200700251/abstract.

CZAPLYSKI, W.L., NA, C.G., ALEXANIAN, E.J. C−H xanthylation: a synthetic platform for alkane functionalization. In: Journal of American Chemical Society, 2016, no138(42), p.13854-13857. DOI: 10.1021/jacs.6b09414, https://pubs.acs.org/doi/abs/10.1021/jacs.6b09414.

SEQUEIRA, C.A., SANTOS, D.M.F. Electrochemical routes for industrial synthesis. In: Journal of The Brazilian Chemical Society, 2009, no20(3), p.387-406. DOI: 10.1590/S0103-50532009000300001, http://www.scielo.br/ scielo.php?script=sci_arttext&pid=S0103-50532009000300002.

SPERRY, J.B., WRIGHT, D.L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. In: Chemical Society Reviews, 2006, no35, p.605-621. DOI: 10.1039/B512308A, http://pubs.rsc.org/ en/content/articlelanding/2006/cs/b512308a/unauth#!divAbstract.

MACK, J.B.C., GIPSON, J.D., BOIS, J.D., SIGMAN, M.S. Ruthenium catalyzed C-H hydroxylation in aqueous acid enables selective functionalization of amine derivatives. In: Journal of American Chemical Society, 2017, no139(28), p.9503-9506. DOI: 10.1021/jacs.7b05469, https://pubs.acs.org/doi/abs/10.1021/jacs.7b05469.

HOWELL, J.M., FENG, K., CLYARK, J.R., TRZEPKOWSKI, L.J., WHITE, C. Remote oxidation of aliphatic C-H bonds in nitrogen containing molecules. In: Journal of American Chemical Society, 2015, no137(46), p.14590-14593. DOI: 10.1021/jacs.5b10299, https://pubs.acs.org/doi/abs/10.1021/jacs.5b10299.

QUI, Y., GAO, S. Trends in applying C-H oxidation to total synthesis of natural products. In: Natural Product Reports, 2017, no33, p.562-581. DOI: 10.1039/C5NP00122F, http://pubs.rsc.org/en/Content/ArticleLanding/2016/NP/ c5np00122f#!divAbstract.

ACERSON, M.J., BINGHAM, B.S., ALLRED, C.A., ANDRUS, M.B. Design and synthesis of terpene based englerin A mimcs using chromium oxide mediated remote CH2 oxidation. In: Tetrahedron Letters, 2015, no56(23), p.3277-3280, DOI: 10.1016/j.tetlet.2015.02.071, http://agris.fao.org/agris-search/search.do?recordID=US201700247486.

HORN, E.J., ROSEN, B.R., CHEN, Y., TANG, J., CHEN, K., EASTGATE, M.D., BARAN, P.S. Scalable and sustainable electrochemical allylic C-H oxidation. In: Nature, 2016, no533, p.77-81. DOI: 10.1038/nature17431, https://www.nature.com/articles/nature17431.

MASUI, M., HOSOMI, K., TSUCHIDA, K., OZAKI, S. Electrochemical oxidations of olefins using N-hydroxyph¬tha-limide as a mediator. In: Chemical and Pharmaceutical Bulletin, 1985, no33, p.4798-4802. DOI: 10.1248/cpb.33.4798, https://www.jstage.jst.go.jp/article/cpb1958/33/11/33_11_4798/_article.

PEARSON, A.J., CHEN, Y.-S., HSU, S.-Y., RAY, T. Oxidation of alkenes to enones using tert-butyl hydroperoxide in the presence of chromium carbonyl catalysts. Tetrahedron Letters, 1984, no25, p.1235-1238. DOI: 10.1016/S0040-4039(01)80121-0, https://www.sciencedirect.com/science/article/pii/S0040403901801210.

KUWAMATA, Y., YAN, M., LIU, Z., BAO, D.-H., CHEN, J., STARR, J.T., BARAN, P.S. Scalable, electrochemical oxidation of unactivated C–H bonds. In: Journal of American Chemical Society, 2017, no139(22), p.7448-7451. DOI: 10.1021/jacs.7b03539, https://pubs.acs.org/doi/abs/10.1021/jacs.7b03539.

ASENSIO, G., CASTELLANO, G., MELLO, R., GONZÁLEZ, N.M.E. Oxyfunctionalization of aliphatic esters by methyl(trifluoromethyl)dioxirane. In: The Journal of Organic Chemistry, 1996, no61, p.5564-5566. DOI: 10.1021/jo9604189, https://pubs.acs.org/doi/abs/10.1021/jo9604189.

BARTON, D.H.R., DOLLER, D. The selective functionalization of saturated hydrocarbons: Gif chemistry. In: Accounts of Chemical Research, no25(11), p.504-512. DOI: 10.1021/ar00023a004, https://pubs.acs.org/doi/abs/10.1021/ ar00023a004


Refbacks

  • There are currently no refbacks.