EVALUAREA IMPACTULUI NANOPARTICULELOR DE OXID DE ZINC ASUPRA TULPINII DE LEVURI PIGMENTATE RHODOTORULA GRACILIS CNMN-Y-03

Alina BEŞLIU, Nadejda EFREMOVA, Agafia USATÎI, Ludmila BATÎR

Abstract


În lucrare sunt prezentate informații noi despre influența nanoparticulelor de ZnO cu dimensiuni de <50 nm și <100 nm asupra levurii pigmentate Rhodotorula gracilis CNMN-Y-03. S-a constatat că viabilitatea, conținutul de pigmenți caro­te­­noidici și carbohidrați la tulpina în studiu se modifică în funcție de dimensiunile și concentrațiile utilizate. S-a demonstrat că viabilitatea celulelor levuriene depinde de timpul de contact pentru ambele tipuri de nanoparticule utilizate. Rezul­tatele au pus în evidență că concentrațiile de 1-20 mg/l sporesc cantitatea de carbohidrați și mențin la nivelul probei de control conținutul pigmenților carotenoidici, pe când concentrațiile de 30-70 mg/l devin toxice pentru tulpina studiată.

 

THE ASSESSMENT OF IMPACT OF ZINC OXIDE NANOPARTICLES ON  PIGMENTED YEASTS

RHODOTORULA GRACILIS CNMN-Y-03

The paper provides new information on the influence of ZnO nanoparticles of <50 nm and <100 nm on pigmented yeast Rhodotorula gracilis CNMN-Y-03. It has been established that the viability, carotenoid and carbohydrate content of the strain has changed according to the size and used concentration. It has been demonstrated that the viability of yeast cells depends on the contact time for both types of nanoparticles. The results have highlighted that concentrations of 1-20 mg/l increased the amount of carbohydrates and maintained the content of carotenoid pigments at the level of the control sample, whereas the concentrations of 30-70 mg/l become toxic for the studied strain.


Keywords


Rhodotorula gracilis, ZnO nanoparticles, cytotoxicity, cell viability, carotenoid pigments, carbohydrates.

Full Text:

PDF

References


FAURE, B., SALAZAR-ALVAREZ, G., AHNIYAZ, A., VILLALUENGA, I., BERRIOZABAL, G., DE MIGUEL, YR., BERGSTRÖM, L. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. In: Sci. Technol. Adv. Mater., 2013, no.14(2), p.23.

SHARMA, D., RAJPUT, J., KAITH, B., KAUR, M., SHARMA, S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. In: Thin. Solid Films, 2010, no.519, p.1224-1229.

WAHAB, R., KHAN, F., AL-KHEDHAIRY, L., AL-KHEDHAIRY, A. Photocatalytic activity and statistical determination of ball-shaped zinc oxide NPs with methylene blue dye. In: Inorg. Nano-Met. Chem., 2017, no.47, p.536-542.

BONDARENKO, O., JUGANSON, K., IVASK, A., KASEMETS, K., MORTIMER, M., KAHRU, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. In: Arch. Toxicol., 2013, no.87(7), p.1181-200.

ESPITA, P., SOARES, N., COIMBRA, J., ANDRADE, N., CRUZ, R., MEDEIROS, E., Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. In: Food Bioprocess Technology, 2012, no.5, p.1447-1464.

MISHRA, Y., ADELUNG, R., RÖHL, C., SHUKLA, D., SPORS, F., TIWARI, V. Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1. In: Antiviral Res., 2011, no.92(2), p.305-12.

GALVÁN, M., GHIYASVAND, M., MASSARSKY, A. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae. In: PLoS One, 2018, no.13(3), p.19.

OTERO-GOZALIEZ, L., GARSIA-SAUCEDO, C., JAMEZ, A., SIERRA-ALVAREZ, R. Toxicity of TiO2, ZrO2, Feo, Fe2O3 and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. In: Chemosphere, 2013, p.1201-1206.

AGUILAR-USCANGA, B., FRANCOIS, J. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. In: Letters in Applied Microbiology, 2003, no.37, p.268-274.

КОНЦЕВАЯ, И.И. Микробиология. Практическое пособие для студентов специальности Биология (научно-педагогическая деятельность). Гомель: УО «ГГУ им. Ф. Скорины», 2011, с.126.

FRENGOVA, G., SIMOVA, E., GRIGOROVA, D. Formation of carotenoids by Rhodotorula glutinis in whey ultra filtrate. In: Biotechnology and Bioengineering, 1994, vol.44, no.8, p.288-294.

TAMAS, V., NEAMȚU, G. Pigmenți carotenoidici și metaboliți. București: Ceres, 1986, p.269.

DEY, P., HARBORN, J. Methods in Plant Biochemistry. In: Carbohydr. Academic Press, 1993, vol.2, p.529.

NISKA, K., PYSZKA, K., TUKAJ, C., WOZNIAK, M., WITOLD, RADOMSKI., M., INKIELEWICZ-STEPNIAK, I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. In: International Journal of Nanomedicine, 2015, no.10(1), p.1095-1107.

GEHRKE, H., PELKA, J., HARTINGER, C.G., BLANK, H., BLEIMUND, F., SCHNEIDER, R., GERTHSEN, D., BRÄSE, S., CRONE, M., TÜRK, M., MARKO, D. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. In: Arch. Toxicol., 2011, no.85(7), p.799-812.

MERHAN, O. Biochemistry and Antioxidant Properties of Carotenoids. In: Intech., 2017, p.51-66.


Refbacks

  • There are currently no refbacks.