PERSPECTIVA BIOTEHNOLOGICĂ PRIVIND APLICAREA NANO-OXIZILOR METALICI LA CULTIVAREA LEVURILOR DE INTERES BIOTEHNOLOGIC

Agafia USATÎI, Natalia CHISELIȚA, Alina BEȘLIU, Nadejda EFREMOVA, Ludmila BEJENARU, Ludmila BATÎR, Constantin DADU, Ana TANASE

Abstract


În lucrare sunt prezentate imformații noi despre gradul de acțiune a nanoparticulelor cu diferite caracteristici fizico-chimice ZnO (10 nm, 30 nm, 50 nm, <100 nm), TiO2 (30 nm, 40 nm), Fe3O4 (10 nm, 30 nm, 50-100 nm), și ZnO/MgO (10/11 nm) asupra levurilor Saccharomyces cerevisiae CNMN-Y-18, Saccharomyces cerevisiae CNMN-Y-20, Rhodoto­rula gracilis CNMN-Y-30, tulpini cu calități biotehnologice performante. S-a constatat că factorii-cheie în declanșarea răs­pun­sului celulelor sunt nanostructura, dimensiunile și concentrațiile nanoparticulelor metalice, iar indicii importanți de răs­puns ai celulei sunt viabilitatea, conținutul de proteine, carbohidrați (inclusiv β-glucani și manoproteine), pigmenți carote­noidici (inclusiv β-caroten, torulenă, torularodină), activitatea enzimelor antioxidante catalaza și SOD ca elemente ale stresului oxidativ al celulei. Analizând efectele nano-oxizilor metalici asupra tulpinilor de levuri, mențio­năm importanța acestora ca factor de reglare a proceselor de cultivare și biosinteză a principiilor bioactive celulare de interes biotehnologic. Rezultatele modelării proceselor biosintetice cu aplicarea nanoparticulelor prezintă privilegiu pentru dezvoltarea unor aplicații inovative, în special în bionanotehnologie, biomedicină, industria alimentară, protecția mediului, alte domenii.

 

BIOTECHNOLOGICAL PERSPECTIVE IN THE APPLICATION OF METAL NANO-OXIDES

AT THE CULTIVATION OF THE YEASTS WITH BIOTECHNOLOGICAL INTEREST

The paper reveals new insights about the degree of action of nanoparticles with different physico-chemical characteristics: ZnO (10 nm, 30 nm, <50 nm, <100 nm), TiO2 (30 nm, 40 nm), Fe3O4 (10 nm, 30 nm, 50 nm-100 nm) and ZnO/MgO (10/11 nm) on Saccharomyces cerevisiae CNMN-Y-18, Saccharomyces cerevisiae CNMN-Y-20 and Rhodotorula gracilis CNMN-Y-30 yeast strains with performing biotechnological qualities. Key factors in triggering cell response are nanostructure, dimensions and concentrations of metal nanoparticles. Important cellular responses are viability, content of the proteins and carbohydrates, including β-glucans and mannoproteins, content of the carotenoid pigments, including β-carotene, torulene and torularhodin, antioxidant activity of SOD and catalase as elements of cellular oxidative stress. Analyzing the effects of metallic nano-oxides on yeast strains, we mention their importance in regulation of the cultivation and biosynthesis of cell bioactive substances with biotechnological interest. The results of the modeling of biosynthetic processes with the application of nanoparticles present advantage in the development of innovative applications, especially in bionanotechnology, biomedicine, food industry, environmental protection, and other fields.


Keywords


Saccharomyces cerevisiae, Rhodotorula gracilis, metal nano-oxides, viability, proteins, carbohydrates, carotenoids, catalase, superoxide dismutase.

Full Text:

PDF

References


BRAIN, J., CURRAN, M., DONAGHEY, T., MOLINA, R. Biologic responses to nanomaterials depend on exposure, clearance, and material characteristics. In: Nanotoxicology, 2009, vol.3, p.174-180.

MRINMOY DE, PARTHA S. GHOSH, AND VINCENT M. ROTELLO. Applications of Nanoparticles in Biology. In: Adv. Mater. 2008, 20, 4225-4241 DOI: 10.1002/adma.200703183

Institutul de Microbiologie și Biotehnologie al AȘM. Tulpina de drojdie Saccharomyces cerevisiae – sursă de β-glucani. Brevet de invenţie MD 4048, Inventatori: CHISELIŢA, O., USATÎI, A., TARAN, N., RUDIC, V., CHISELIŢA, N., ADAJUC, V., BOPI, 2010, 6.

Institutul de Microbiologie şi Biotehnologie al AŞM. Tulpină de drojdii Saccharomyces cerevisiae – producătoare de manani: Brevet de invenție MD 4216, Inventatori: USATÎI, A., MOLODOI, E., EFREMOVA, N., CHISELIŢA, N., BORISOVA, T., FULGA, L. C12N 1/16, C12R 1/865. Publ. 15.08.2012, BOPI, 2013, 4.

USATÎI, A., BEȘLIU, A., CHIRIȚA, E. Caractere fenotipice și compoziția biochimică a tulpinii de levuri pigmentate Rhodotorula gracilis CNMN-Y-30. În: Materialele Conferinței tehnico-ștințiifice a colaboratorilor, doctoranzilor și studenților, UTM, 26-28 noiembrie 2015. Chișinău, 2016, 2 (1), p.31-34. ISBN 978-9975-45-440-7

AGUILAR-USCANGA, B., FRANCOIS, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. In: Letters in Applied Microbiology, 2003, no37, p.268-274.

GUTUL, T., RUSU, E., CONDUR, N., URSAKI, V., GONCEARENCO, E., VLAZAN, P. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. In: Beilstein J. Nanotechnol., 2014, no5, p.402-406. DOI: 10.3762/bjnano.5.47.

GUTUL, T., RASTEMISINA, I., POSTOLACHI, O., NICORICI, A., DVORNIKOV, D., PETRENCO, P. Synthesis and biological application of magnetite nanoparticles. In: Moldavian Journal of the Physical Sciences, 2015, vol.14, no.3-4, p.177-188.

RUSU, E., URSAKI, V., GUTUL, T., VLAZAN, P, SIMINEL, A. Characterization of TiO2 Nanoparticles and ZnO/TiO2 Composite Obtained by Hydrothermal Method. In: 3rd International Conference on Nanotechnologies and Biomedical Engineering, Springer Science+Business Media Singapore 2016, V. Sontea and I. Tiginyanu (eds.), IFMBE Proceedings 55, 93 – 96, DOI: 10.1007/978-981-287-736-9_22.

OTERO-GOZALIEZ, L., GARSIA-SAUCEDO, C., JAMEZ, A., SIERRA-ALVAREZ, R. Toxicity of TiO2, ZrO2, Fe0, Fe2O3 and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. In: Chemosphere, 2013, p.1201-1206.

ANGHEL, I., VOICA, C., TOMA, N., COJOCARU, I. Biologia şi tehnologia drojdiilor. Bucureşti: Editura Tehnică, 1991, vol.2. 385 p.

BARNETT, J., PAYNE, R., VARROW, D. Yeasts: characteristics and identification. 3-rd Edition. Cambrige University Press, 2000, p.1150.

KREGER-VAN RIJ, N.J.W. General classification of the yeasts. The yeast: Ataxonomic study. 3rd Edition. Elsevier, Amsterdam, 1984. 1082 p.

ZARNEA, G., MIHĂESCU, G.R., VELEHORSCHI, V. Principii și tehnici de Microbiologie generală. Vol.I, București, 1992. 330 p.

DOBIAS, J. Nanoparticles and Microorganisms: from Synthesis to Toxicity. These no.5614 (2013) pour l`obtetion du grade de docteur es sciences. Ecole Polytechnique Federale de Lausanne. Suisse, 2013. 139 p.

MITCHELL DESMA N., HILARY ARNOLD GODWIN, ELIZABETH CLAUDIO. Nanoparticle Toxicity in Saccharomyces cerevisiae: A Comparative Study Using Au Colloid, Ag Colloid, and HAuCl4 • 3H2O in Solution. In: Nanoscape, Spring 2004, Issue 1, p.59-69.

SAHAYARAJ, K., RAJESH, S. Bionanoparticles: synthesis and antimicrobial applications. Science against microbial pathogens: communicating current research and technological advances. A. Méndez Vilas (Ed.) In: FORMATEX, 2011, p.228-244.

ZHANG YIXIA, DAPENG YANG, YIFEI KONG, XIANSONG WANG, OMAR PANDOLI, GUO GAO. Synergetic Antibacterial Effects of Silver Nanoparticles@Aloe Vera Prepared via a Green Method. In: Nano Biomed. Eng., 2010, no.2(4), p.252-257.

LOWRY, O., ROSEBOUGH, N., FARR, A. et. al. Protein measurment with the folin phenol reagent. In: J. Biol. Chem., 1951, vol.193, p.265-275.

DEY, P., HARBORNE, J. Methods in Plant Biochemistry. Carbohydr. Academic Press, 1993, vol.2, 529 p.

THAMMAKITI, S., SUPHANTHARIKA, M., PHAESUWAN, T., VERDUYN. Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. In: International Journal of Food Science&Technology, 2004, no.39(1), p.21-29.

LIU, H.-Z., WANG, Q., LIU, H.-Y., FANG, F. Statistical optimization of culture media and conditions for production of mannan by S. cerevisiae. In: Biotech. and Bioprocess Engineering, 2009, vol.14(5), p.577-583.

ZHANG, Y.T., GU, W.Y. Determination of Mannose in Yeast by Ultraviolet Spectrometry. În: Food. Ferment. Ind., 1999, no.5, p.32-36.

FRENGOVA, G., SIMOVA, E., GRIGOROVA, D. Formation of carotenoids by Rhodotorula glutinis in whey ultra filtrate. In: Biotechnology and Bioeng., 1994, vol.44, no.8, p.288-294.

EL-BANNA, A., AMAL, M.A., EL-RAZEK, AHMED R. EL-MAHDY. Some Factors Affecting the Production of Carotenoids by Rhodotorula glutinis var. glutinis. In: Food and Nutrition Sciences, 2012, no.3, p.64-71.

TĂMAȘ V., NEAMȚU G. Pigmenți carotenoidici și metaboliți. Chimie și biochimie. București, 1986, vol.1, 269 p.

AEBI, H. Catalase in Vitro. In: Methods in Enzymology, 1984, no.105, p.121-126.

Institutul de Microbiologie și Biotehnologie al Academiei de Științe a Moldovei. Metodă de determinare a activităţii catalazei. Brevet de invenție MD 4205. Inventatori: EFREMOVA, N., USATÎI, A., MOLODOI, E. BOPI, 2013, 2, p.26.

НЕКРАСОВА, Г.Ф., КИСЕЛЕВА И.С. Экологическая физиология растений. Руководство к лабораторным и практическим занятиям.Екатеринбург: Уральский государственный университет, 2008. 157 c.


Refbacks

  • There are currently no refbacks.