COMPLECȘI Ln(III)-Bi(III) ÎN BAZA IONILOR TRIETILENTETRAAMINHEXAACETAT  PRECURSORI MOLECULARI PENTRU OXIZII MICȘTI BiLnO3

Nelea POPA, Ion BULIMESTRU, Aurelian GULEA

Abstract


Lucrarea este axată pe sinteza și studiul unui șir de combinații coordinative heterometalice ale lantanidelor(III) și bis­mutului(III) cu formula generală LnBi(ttha)·nH2O (ttha6- = trietilentetraaminhexaacetat) pe rol de precursori moleculari pentru obținerea oxizilor micști BiLnO3. În baza spectrelor IR a fost stabilită prezența a două serii de complecși analogi (Ln(III) = La, Pr, Nd, Gd, Dy, unde n=7 și Ln(III) = Ho, Er, unde n=10). Analiza termogravimetrică efectuată în flux de oxigen generează oxidul preconizat BiLnO3 deja la 600oC, pe când în flux de azot acest proces nu este finalizat nici la 900oC. Difracția razelor X pe pulberile obținute la descompunerea termică a precursorilor a confirmat că viteza de cal­cinare și natura ionilor Ln(III) nu influențează compoziția reziduurilor finale, în toate cazurile obținându-se oxizii heterometalici preconizați BiLnO3 în stare pură.

 

Ln(III)-Bi(III) COMPLEXES BASED ON TRIETHYLENETETRAAMINEHEXAACETATE IONS AS
MOLECULAR PRECURSORS FOR BiLnO3
MIXED OXIDES

The paper focuses on the synthesis and study of a series of heterometallic coordination compounds of lanthanides(III) and bismuth(III) with the general formula LnBi(ttha)·nH2O (ttha6- = triethylenetetraaminehexaacetate) as molecular pre­cursors for getting BiLnO3 mixed-oxides. Based on the IR spectra, the presence of two series of analogous complexes was established (Ln(III) = La, Pr, Nd, Gd, Dy, where n=7 and Ln(III) = Ho, Er, where n=10). Thermogravimetric analysis performed in oxygen flow results in the formation of the expected BiLnO3 oxides at already 600oC, while in nitrogen flow this process is not completed even at 900oC. Powder X-ray diffraction patterns of residues obtained upon thermal decom­po­sition of the precursors confirmed that the heating rate and the nature of Ln(III) ions do not affect the composition of the final product, in all cases these are the expected pure BiLnO3 heterometallic oxides.


Keywords


coordination compounds, molecular precursors, Lanthanide(III), Bismuth(III), triethylenetetraaminehexaacetate, heating rate, mixed-oxide.

Full Text:

PDF

References


CARLOS, L., FERREIRA, R., DE ZEA BERMUDEZ, V., JULIAN-LOPEZ, B., ESCRIBANO, P. Progress on lan-thanide-based organic–inorganic hybrid phosphors. In: Chem. Soc. Rev., 2011, 40, p.536–549. DOI: 10.1039/c0cs00069h

LEWIS, L., BRAYSHAW, R., SMITH, C.G., BADAOUI, M., IRVINGC, J.A., PRICE S.R. Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion. In: Metallomics, 2019, 11, p.914-924. DOI: 10.1039/c8mt00317c

KOSTOVA, I. Lanthanides as Anticancer Agents. In: Curr. Med. Chem.-Anti-Cancer Agents, 2005, 5, p.591-602. DOI: 10.2174/156801105774574694

CARAVAN, P., ELLISON, J., MCMURRY, T., LAUFFER, R. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. In: Chem. Rev., 1999, 99, p.2293-2352. DOI: 10.1021/cr980440x

WOODS, M., KOVACS, Z., SHERRYA, A.D. Targeted Complexes of Lanthanide(III) Ions as Therapeutic and Diagnostic Pharmaceuticals. In: J. Supramolecular Chem., 2002, 2, p.1–15. DOI: 10.1016/S1472-7862(02)00072-2

ZHANG, J., LI, Y., HAO, X., ZHANG, Q., YANG, K., LI, L., MA, L., WANG, S., LI, X. Recent Progress in Therapeutic and Diagnostic Applications of Lanthanides. In: Medicinal Chemistry, 2011, 11, p.678-694. DOI: 10.2174/138955711796268804

DAS, V., KAUSHIK, R., HUSSAIN, F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications. In: Coord. Chem. Rev., 2020, 143, p.213-271. DOI: 10.1016/j.ccr.2020.213271

CHUKWUMA, I.D., YOSHIDA, T., COSQUER, G., ASEGBELOYIN, J.N., ZHANG, H., THOM, A., YAMASHITA, M. Periodicity of Single Molecule Magnet Behaviour of Heterotetranuclear Lanthanide Complexes across the Lanthanide Series: A Compendium. In: Chem. Eur. J., 2020, 26 (27), p.6036-6049. DOI: 10.1002/chem.202000161

CHEN, F.-F., CHEN, Z.-Q., BIAN, Z.-Q., HUANG, C.-H. Sensitized luminescence from lanthanides in d–f bimetallic complexes. In: Coord. Chem. Rev., 2010, 254, p.991–1010. DOI: 10.1016/j.ccr.2009.12.028

WARD, M. D. Transition-metal sensitised near-infrared luminescence from lanthanides in d–f heteronuclear arrays. In: Coord. Chem. Rev., 2007, 251, p.1663–1677. DOI: 10.1016/j.ccr.2006.10.005

QIAO, W.-Z., XU, H., CHENG, P., ZHAO, B. 3d-4f Heterometal–Organic Frameworks for Efficient Capture and Conversion of CO2. In: Cryst. Growth Des., 2017, 17, 6, p.3128–3133. DOI: 10.1021/acs.cgd.7b00063

LU, H., WRIGHT, D.S., PIKE, S.D. The use of mixed-metal single source precursors for the synthesis of complex metal oxides. In: Chem. Commun., 2020, 56, p.854. DOI: 10.1039/c9cc06258k

MEHRING, M. From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. In: Coord. Chem. Rev., 2007, 251, p.974-1006. DOI: 10.1016/j.ccr.2006.06.005

STAVILA, V., DAVIDOVICH, R. L., GULEA, A., WHITMIRE, K.H. Bismuth(III) complexes with aminopoly¬carbo-xylate and polyaminopolycarboxylate ligands: Chemistry and structure. In: Coord. Chem. Rev., 2006, 250(21-22), p.2782-2810. DOI: 10.1016/j.ccr.2006.02.032

WULLENS, H., BODART, N., DEVILLERS, M. New Bismuth(III), Lanthanum(III), Praseodymium(III), and Heterodinuclear Bi-La and Bi-Pr Complexes with Polyaminocarboxylate Ligands. In: J. Solid State Chem., 2002, 167, p.494–507. DOI: 10.1006/jssc.2002.9668

WULLENS, H., LEROY, D., DEVILLERS, M. Preparation of ternary Bi-La and Bi-Pr oxides from polyaminocarbo-xylate complexes. In: Int. J. Inorg. Mater., 2001, vol.3, p.309-321. DOI: 10.1016/S1466-6049(01)00036-8

STAVILA, V., GULEA, A., POPA, N., SHOVA, S., MERBACH, A., SIMONOV, Yu.A., LIPKOWSKI, J. A novel 3D Nd(III)–Bi(III) coordination polymer generated from EDTA ligand. In: Inorg. Chem. Commun., 2004, 7, p.634-637. DOI: 10.1016/ j.inoche.2004.03.003

BACHMAN, R. E., WHITMIRE, K. H., THURSTON, J. H., GULEA, A., STAVILA, O., STAVILA, V. Bismuth ladder polymers: structural and thermal studies of [Bi(OCH2CH2)3N]n and [(BixTb1−x(O2C2H2)3N·2H2O]n. In: Inorg. Chimica Acta, 2003, 25(346), p.249-255. DOI: 10.1016/S0020-1693(02)01381-6

DRACHE, M., ROUSSEL, P., WIGNACOURT, J.-P. Structures and Oxide Mobility in Bi-Ln-O Materials: Heritage of Bi2O3. In: Chem. Rev., 2007, 107, p.80-96. DOI: 10.1021/cr050977s

GÖNEN, Y.E., ERMIŞ, I., ARI, M. Electrical properties of triple-doped bismuth oxide electrolyte for solid oxide fuel cells. In: Phase Transitions, 2016, 89 (11), p.1129-1136. DOI: 10.1080/01411594.2016.1150471

TROYANCHUK, I.O., BUSHINSKY, M.V., KARPINSKY, D.V., MANTYTSKAYA, O.S., FEDOTOVA, V.V., PROCHNENKO, O.I. Structural transformations and magnetic properties of Bi1–x Lnx FeO3 (Ln = La, Nd, Eu) multi-ferroics. In: Phys. Status Solidi (B), 2009, 246 (8), p.1901-1907. DOI: 10.1002/pssb.200945030

SINGHA, M.K., YANGA, Y., TAKOUDISA, C.G. Synthesis of multifunctional multiferroic materials from metal-organics. In: Coord. Chem. Rev., 2009, 253, p.2920–2934. DOI: 10.1016/j.ccr.2009.09.003

BACK, M., TRAVE, E., RIELLO, P., JOOS, J. Insight into the Upconversion Luminescence of Highly Efficient Lanthanide-Doped Bi2O3 Nanoparticles. In: J. Phys. Chem. C, 2018, 122, 13, p.7389–7398. DOI: 10.1021/acs.jpcc.8b00637

HUANG, X.Y., JI, X.H., ZHANGW, Q.Y. Broadband Downconversion of Ultraviolet Light to Near-Infrared Emission in Bi3+–Yb3+- Codoped Y2O3 Phosphors. In: J. Am. Ceram. Soc., 2011, 94 (3), p.833–837. DOI: 10.1111/j.1551-2916.2010.04184.x

ZHAO, X., SUO, H., ZHANG, Z., ZHANG, G., GUO, C. Simultaneously controlling phase, morphology and up-conversion luminescence via lanthanide doping in Bi2O3: Yb3+/Tm3+ nanoparticles. In: Ceramics International, 2020, 46 (3), p.3183-3189. DOI: 10.1016/j.ceramint.2019.10.022

REVERBERI, A.P., VARBANOV, P.S., VOCCIANTE, M., FABIANO, B. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis. In: Front. Chem. Sci. Eng., 2018, 12, p.878–892. DOI: 10.1007/s11705-018-1744-5

BAKIRO, M., SALWA, H.A., ALZAMLY, A. Investigation of the band gap energy shift and photocatalytic properties of Bi3+- doped ceria. In: Inorg. Chem. Commun., 2020, 116, p.107906. DOI: 10.1016/j.inoche.2020.107906

RAJ, A.K., RAO, P.P., SREENA, T.S., AJU THARA, T.R. Pigmentary colors from yellow to red in Bi2Ce2O7 by rare earth ion substitutions as possible high NIR reflecting pigments. In: Dyes and Pigments, 2019, 160, p.177-187. DOI: 10.1016/j.dyepig.2018.08.010

SULCOVA, P. Thermal stability and colour properties of new pigments based on BiREO3. In: J. Therm. Anal. Calorim., 2012, 109, p.639–642. DOI: 10.1007/s10973-012-2410-7

WULLENS, H., DEVILLERS, M., TINANT, B., DECLERCQ, J.-P. Synthesis, characterization and crystal structures of bismuth(III) complexes with triethylenetetraaminehexaacetic acid and trans-cyclohexane-l,2-diaminetetraacetic acid. In: J. Chem. Soc. Dalton Trans., 1996, p.2023-2029.


Refbacks

  • There are currently no refbacks.