OPTIMIZAREA PROCESULUI DE OXIDARE CATALITICĂ A AMOXICILINEI ÎN SOLUȚII APOASE

Larisa MOCANU, Maria GONȚA, Vera MATVEEVICI

Abstract


În articol sunt prezentate rezultatele investigației proceselor de oxidare a amoxicilinei cu reagentul Fenton în mediul acid. Reziduurile medicamentoase sunt nebiodegradabile; astfel, una dintre metodele de tratare a apelor reziduale este oxidarea catalitică. Obiectivul principal al acestei cercetări rezidă în optimizarea parametrilor fizico-chimici ce influen­țează procesul de oxidare a amoxicilinei (AMX). Au fost realizate mai multe studii experimentale pentru a determina efectul degradării/mineralizării și concentrațiile optime de H2O2 și de catalizator (reagentul Fenton). Concentrațiile inițiale ale substanțelor reactante au fost variate în intervalul: 0.01 – 0.3 mM pentru Fe (II) și 1 – 5 mM pentru H2O2. Oxidarea catalitică a AMX s-a realizat la valaorea pH-ului care a fost ajustată la valoarea 2,2.

În rezultatul cercetărilor de laborator s-a constatat că raportul optim dintre Fe2+: H2O2: AMX este de 1:10:2. S-a ajuns la concluzia că efectul de răspuns al fiecărei variabile independente depinde de valoarea celeilalte, datorită existenței interacțiunilor simultane. Astfel, oricare dintre parametrii studiați ar putea influența pozitiv sau negativ degradarea amoxi­cilinei.

În rezultatul procesului de optimizare a parametrilor fizico–chimici, la oxidarea catalitică a AMX s-a obținut că rata maximă de mineralizare/ oxidare a amoxicilinei a fost de 96%, iar rata de degradare a AMX – de 90%.

 

OPTIMIZATION OF AMOXICILLIN OF CATALYTIC OXIDATION PROCESS

IN AQUEOUS SOLUTIONS

This paper describes a study of catalytic oxidation of AMX by Fenton process in aqueous solution. These chemicals are not biodegrading and under such conditions and chemical oxidation could be a very effective alternative treatment. The primary objective of this research was to optimize the parameters that influence the oxidation process of AMX and to evaluate the degradation of AMX by Fenton reagent. Several experimental studies have been performed in order to determine the degradation/mineralization effect and optimal concentrations of oxidant and catalyst. The initial concentra­tions of the reactants ranged from 0.01 to 0.3 mM for Fe (II) and 1 to 5 mM for H2O2. The pH value was adjusted to 2.2 using 0.1 N H2SO4.

As a result of laboratory research, it was found that the optimal ratio of Fe2+: H2O2: AMX is 1: 10: 2. It was concluded that the response effect of each independent variable depends on the value of the other, due to the existence of cross-interactions. Thus, any of the psysico-chemical parameters studied could positively or negatively influence the degrada­tion of amoxicillin.

As a result of the optimization process of the physico-chemical parameters, it was obtained that the maximum mineralization/ oxidation rate of amoxicillin has been 96%, and the degradation rate of AMX – 90%.


Keywords


amoxicillin, catalytic oxidation, Fenton reagent, synthetic system.

Full Text:

PDF

References


HANSEN, E., KARSLAKE, J., WOODS, R.J., READ, A.F., WOOD, K.B. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. In: PLOS Biology, 2020, no18 (5), e3000713. https://doi:10.1371/journal.pbio.3000713b

VERMA, M., HARITASH, A.K. Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater. In: Advances in Environmental Research, 2020, no9(1), p.1-17. https://doi.org/10.12989/aer.2020.9.1.001

HOMAYOONFAL, M., MEHRNIA, M.R. Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. In: Sep. Purif. Technol., 2014, no130, p.74-83.

PIROM, T., SUNSANDEE, N., RAMAKUL, P. Separation of amoxicillin using trioctylmethylammonium chloride via a hollow fiber supported liquid membrane: modeling and experimental investigation. In: J. Ind. Eng. Chem., 2015, no23, p.109-118.

SHEYDAEI, M., ABER, S., KHATAEE, A. Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. In: J. Ind. Eng. Chem., 2013, no20, p.1772-1778.

PÉREZ-RODRÍGUEZ, F., MERCANOGLU TABAN, B. A state-of-art review on multi-drug resistant pathogens in foods of animal origin: risk factors and mitigation strategies. In: Front Microbiol. 2019, no10 (2091). https://doi:10.3389/fmicb.2019.02091

MELO, T.V., MOURA, A.M.A. Use of seawed flour in the animal feeding. In: Arch. Zoot., 2009, no 58, p.99-107.

DE CARVALHO, JOYCE F., DE MORAES, JOSÉ ERMÍRIO F. Treatment of simulated industrial pharmaceutical wastewater containing amoxicillin antibiotic via advanced oxidation processes. In: Environmental Technology, 2020. https://doi.org/10.1080/09593330.2020.1745296

HOMEM, V., ALVES, A., SANTOS, L. Amoxicillin degradation at ppb levels by Fenton´s oxidation using design of experiments. In: Science of the Total Environment, 2010, no 408, p.6272-6280. https://doi.org/10.1016/j.scitotenv.2010.08.058

KARIMNEZHAD, H., NAVARCHIAN, A.H., GHEINANI, T.T., ZINADINI, S. Amoxicillin removal by Fe-based nanoparticles immobilized on polyacrylonitrile membrane: Individual nanofiltration or Fenton reaction, vs. engineered combined process. In: Chemical Engineering Research and Design, 2020, no153, p.187-200. https://doi.org/10.1016/ j.cherd.2019.10.031

TROVÓ, A.G., NOGUEIRA, R.F.P., AGUERA, A., FERNANDEZ-ALBA, A.R., MALATO, S. Degradation of the antibiotic amoxicillin by Photo-Fenton process – Chemical and toxicological assessment. In: Water Research, 2011, no45, p.1394-1402. https://doi.org/10.1016/j.watres.2010.10.029

RIBEIRO, A.R., NUNES, O.C., PEREIRA, M.F.R. SILVA, M.T.A. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU Environ. Int., 2015, no7, p.33-51.

ARSLAN-ALATON, I., DOGRUEL, S. Pre-treatment of penicillin formulation effluent by advanced oxidation processes. In: Journal Hazardous Materials, 2004, no112, p.105-113. https://doi.org/10.1016/j.jhazmat.2004.04.009

BREITKREITZ, M. C., SOUZA, A. M., POPPI, R. Experimento didático de quimiometria para planejamento das condições experimentais na determinação espectrofotométrica de ferro II com fenantrolina. In: Un tutorial, parte III. Química Nova, 2014, no37, p.564-573. https://doi.org/10.5935/0100- 4042.20140092

CALDAS, L.F.S., FRANCISCO, B.B.A., NETTO, A.D.P., CASSELLA, R.J. Multivariate optimization of a spectrophotometric method for copper determination in Brazilian sugar-cane spirits using the Doehlert design. In: Microchemical Journal, 2011, no99, p.118-124. https://doi.org/10.1016/j.microc.2011.04.008

JUNG, Y.J., KIM, W.G., YOON, Y., KANG, J., HONG, Y.M., KIM, H.W. Removal of amoxicillin by UV and UV/H2O2 processes. In: Science of the Total Environment, 2012, no420, p.160-167. https://doi.org/10.1016/j.scitotenv.2011.12.011

PERINI, J.A.L., TONETTI, A.L., VIDAL, C., MONTAGNER, C.C., NOGUEIRA, R.F.P. Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via Photo-Fenton process under ultraviolet germicidal irradiation. In: Applied Catalysis B: Environmental, 2018, no224, p.761-771. https://doi.org/10.1016/j.apcatb.2017.11.02 1

CHAUDHURI, M, BIN ABD WAHAP, M.Z., AFFAM, A.C. Treatment of aqueous solution of antibiotics amoxicillin and cloxacillin by modified Photo-Fenton process. In: Desalination and Water Treatment, 2013, no51, p.37-39. https://doi.org/10.1080/19443994.2013.773565

ELMOLLA, E., CHAUDHURI, M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. In: Journal Hazardous Materials, 2009a, no170, p.666-672. https://doi.org/ 10.1016/j.jhazmat.2009.05.013

LIU, Y., ZHA, S., RAJARATHNAM, D., CHENA, Z. Divalent cations impacting on Fenton-like oxidation of amoxicillin using Zn(VI) as a heterogeneous catalyst. In: Sep. Purif. Technol., 2017, no188, p.548-552.

ZHA, S., CHENG, Y., GAO, Y., CHEN, Z., MEGHARAJ, M., NAIDU, R. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. In: Chem. Eng. J., 2014, no255, p.141-148.

PUTRA, E.K., PRANOWO, R., SUNARSO, J., INDRASWATI, N., ISMADJI, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and Kinetics. In: Water Research, 2009, no43, p.2419-2430. https://doi.org/10.1016/j.watres.2009.02.039

LITTER M.I., SLODOWICZ, M. An overview on heterogeneous Fenton and photoFenton reactions using zerovalent iron materials. In: Journal of Advanced Oxidation Technologies, 2017. https://www.researchgate.net/publication/313036256

ZHOU, P., WANG, X., YANG, B., HOLLMANNC, F., WANG, Y. Chemoenzymatic epoxidation of alkenes with Candida antarctica lipase B and hydrogen peroxide in deep eutectic solvents. In: RSC Adv., 2017, no7, p.12518-12523.

LUCAS, M.S, PERES, J.A. Decolorization of the azo dye Reactive Black 5 by Fenton and Photo-Fenton oxidation. In: Dyes Pigm., 2006, no71, p.236-44.

ARSLAN-ALATON, I., TURELI, G., OLMEZ-HANCI, T. Treatment of azo dye production wastewaters using Photo-Fenton like advanced oxidation processes: optimization by response surface methodology. In: J. Photochem. Photobiol. A., 2009, no202, p.142–53.

CORTEZ, S., TEIXEIRA, P., OLIVEIRA, R., MOTTA, M. Evaluation of Fenton and ozone-based advanced oxidation processes pre-treatments. In: Journal of Environmental Management, 2011, no 92, p.749-755.


Refbacks

  • There are currently no refbacks.