OXIDAREA FOTOCATALITICĂ A AMOXICILINEI CU OXID DE TITAN (IV) ȘI PEROXID DE HIDROGEN

Larisa MOCANU, Maria GONȚA, Vera MATVEEVICI, Veronica PORUBIN-SCHIBĂTOR

Abstract


În această lucrare sunt prezentate rezultatele proceselor de oxidare eterogenă a amoxicilinei (AMX), în reactorul foto­chimic de tip deschis cu oxid de titan (IV) și peroxid de hidrogen la iradierea cu raze UV (254 nm) în mediul slab acid. În procesul de oxidare fotochimică a AMX scopul principal include optimizarea condițiilor fizico-chimice în vederea de­gradării și oxi­dă­rii/mineralizării eficiente a antibioticului (AMX). Astfel, la valoarea pH-ului de 3,8, doza de fotocatalizator TiO2 de 200 mg/L și concentrația oxidantului H2O2 de 34 mg/L rezultă o performanța de degradare a AMX de 1-2% și un grad de oxidare/minera­lizare, în medie, de 92% pentru concentrația substratului de 100 mg/L. La concentrații de 200 și 300 mg/L, rata de degradare este de 55% după 300 de secunde și, respectiv, de 65% după 180 de secunde, iar gradul de oxidare/mineralizare este, în medie, de 97-98% și se mărește nesemnificativ odată cu mărirea timpului de oxidare de la 60 de secunde până la 1200 de secunde. Deși epurarea are loc până la 98%, concentrația compușilor remanenți este ridicată (10-12 mgO/L), ceea ce indică la prezența unor compuși organici stabili, care sunt greu oxidabili în condițiile de mai sus.

 

PHOTOCATALYTIC DEGRADATION OF AMOXICILLIN FROM AQUEOUS SOLUTION BY
TITA­NIUM DIOXIDE (IV) AND HYDROGEN PEROXIDE

This paper describes a study of photocatalytic oxidation of AMX by titanium dioxide from synthetic solutions in an open photochemical reactor with titanium oxide (IV) and hydrogen peroxide under UV irradiation (254 nm) in a weakly acidic medium. The photochemical oxidation process was carried out in order to optimize the physicochemical conditions for the degradation and efficient oxidation/mineralization of the antibiotic (AMX). Thus, at pH value 3.8, a 200 mg/L dose of TiO2 photo catalyst, and 34 mg/L oxidant concentration (H2O2) lead to AMX degradation rate of 1-2% and an oxidation/mineralization degree, on average, of 92% at a substrate concentration of 100 mg/L. At concen­trations 200 and 300 mg/L of antibiotic, the degradation rate is 55% after 300 seconds and 65% after 180 seconds, respectively. The oxidation/mineralization degree averages 97-98% and increases insignificantly when increasing the oxidation time from 60 seconds to 1200 seconds. Although the treatment process occurs up to 98%, the concentration of the remaining compounds is high (10-12 mgO/L), which indicates the presence of stable organic compounds that are difficult to oxidize under the above conditions.


Keywords


amoxicillin, photocatalytic oxidation, titanium dioxide, degradation, oxidation/mineralization, synthetic systems.

Full Text:

PDF

References


FAZILATI, M., HASSANI, A., TORABIAN, A. Photocatalytic Degradation of Amoxicillin and Cephalexin from Aqueous Solution by ZnO and TiO2. In: International Congress on Engineering Science and Sustainable Urban Development Denmark – Copenhagen September, 2018, p.1-10.

DE CARVALHA, J.F., DE MORAES, J.E.F. Treatment of simulated industrial pharmaceutical wastewater containing amoxicillin antibiotic via advanced oxidation processes. In: Environmental Technology, 2020. [Accesat: 29.08.2020]. Disponibil: https://www.tandfonline.com/loi/tent20

GOZLAN, I., ROTSTEIN, A. AVISAR, D. Amoxicillin-degradation products formed under controlled envi¬ron-mental conditions: Identification and determination in the aquatic environment. In: Chemosphere, 2013, no.91(7), p.985–992. http://doi:10.1016/j.chemosphere.2013.01.095

VERMA, M., HARITASH, A.K. Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater. In: Adv. Environ. Res., 2020, no.9(1), p.1–17. http://dx.doi.org/10.12989/aer.2020.9.1.001

MOCANU, L., GONŢA, M., MATVEEVICI, V. Optimizarea procesului de oxidare catalitică a amoxicilinei în soluții apoase. În: Studia Universitatis. Seria „Ştiinţe Reale şi ale Naturii” 2020, nr.1(131), p.38-47. ISSN 1814-3237 ISSNe 1857-498X

KAY, P., HUGHES, S.R., AULT, J.R., ASHCROFT, E.A. Widespread, routine occurrence of pharmaceuticals in sewage effluent combined sewer overflows and receiving waters. In: Environmental Pollution, 2017, no.220, p.1447–1455. http://dx.doi.org/10.1016/j.envpol.2016.10.087

FATTA-KASSINOS, D., MERIC, S., NIKOLAOU, A. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. In: Anal. Bioanal. Chem., 2011, no.399, p.251–275. http://dx.doi.org/10.1007/s00216-010-4300-9

LESTER, Y., MAMANE, H., ZUCKER, I., AVISAR, D. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. In: Water Res., 2013, no.47, p.4349–4356. http://dx.doi.org/10.1016/j.watres.2013.04.059

TRAN, N., REINHARD, M., GIN, K. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. In: Water Res., 2018, no.133, p.182–207. http://dx.doi.org/10.1016/j.watres.2017.12.029

CHEN, B., LIN, L., FANG, L., YANG, Y. Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. In: Water Res., 2018, no.134, p.200–208. http://dx.doi.org/10.1016/j.watres.2018.02.003

CARVALHO, J. F., MORAES, J. E. F. Treatment of simulated industrial pharmaceutical wastewater containing amoxicillin antibiotic via advanced oxidation processes. In: Environmental Technology, 2020, p.1–37. http://doi:10.1080/09593330.2020.1745296

MENG, L., LI, X., WANG, X., MA, K., LIU, G., ZHANG, J. Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system. In: J. Environ. Sci., 2017, no.61, p.110–117.

HOMEM, V., ALVES, A., SANTOS, L. Amoxicillin degradation at ppb levels by Fenton’s oxidation using design of experiments. In: Sci. Total Environ., 2010, no.408, p.6272–6280. http://dx.doi.org/10.1016/j.scitotenv.2010.08.058

DIMITRAKOPOULOU, D., RETHEMIOTAKI, I., FRONTISTIS, Z., XEKOUKOULOTAKIS, N.P. Degradation, mi¬-ne¬ralization and antibiotic inactivation of amoxicillin by UV-/TiO2 photocatalysis. In: J. Environ. Manage., 2012, no.98, p.168–174. http://dx.doi.org/10.1016/j.jenvman.2012.01.010

TROVO´, A.G., NOGUEIRA, R.F., AGUERA, A., FERNANDEZ-ALBA, A.R. Degradation of the antibiotic amoxicillin by photo-fenton process -chemical and toxicological assessment. In: Water Res., 2011, no.5, p.1394. http://dx.doi.org/10.1016/j.watres.2010.10.029

LOFRANO, G., LIBRALATO, G., SHARMA, S.K., CAROTENUTO, M. Nano based photocatalytic degradation of phar¬maceuticals. In: Nanotechnol. Environ. Remediat., 2017, p.221–238. http://dx.doi.org/10.1007/978-3-319-53162-5_7

MONTEOLIVA-GARCÍA, A., MARTÍN-PASCUAL, J., MUÑÍO, M.M., POYATOS, J.M. Removal of carba¬maze-pine, ciprofoxacin and ibuprofen in real urban wastewater by using light-driven advanced oxidation processes. In. J. Environ. Sci. Technol., 2019. http://dx.doi.org/10.1007/s13762-019-02365-9

VERMA, M., HARITASH, A.K. Photocatalytic degradation of Amoxicillin in pharmaceutical wastewater: A potential tool to manage residual antibiotics. In: Environmental Technology and Innovation, 2020, 20:101072. DOI: 10.1016/j.eti.2020.101072

DUTTA, S., GHOSH, A., MOI, S.C., SAHA, R. Application of response surface methodology for optimization of reactive azo dye degradation process by Fenton’s oxidation. In. J. Environ. Sci. Dev., 2015, no.6 (11), p.818–823. http://dx.doi.org/10.7763/IJESD.2015.V6.705

VERMA, M., HARITASH, A.K. Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes. In: J. Environ. Chem. Eng., 2019, 7(1), 102886. http://dx.doi.org/10.1016/j.jece.2019.102886

TRELLU, C., OTURAN, N., KEITA, F.K., FOURDRIN, C. Regeneration of activated carbon fibre by electro-Fenton process. In: Environ. Sci. Technol., 2018, no.52(13), p.7450–7457. http://dx.doi.org/10.1021/acs.est.8b01554.

PATIL, A.L., PATIL, P.N., GOGATE, P.R. Degradation of imidacloprid containing wastewaters using ultrasound-based treatment strategies. In: Ultrason. Sonochem., 2014, no.21, p.1778–1786. http://dx.doi.org/10.1016/j.ultsonch.2014.02.029

PALAK, CHAUHAN, S., KUMAR, K., HARITASH, A.K. Degradation of AY-36 using TiO2 - UV photocatalytic system. In: Appl. Chem. Eng., 2018, no.1(3), p.1–6. http://dx.doi.org/10.24294/ace.v1i3.404

ELMOLLA, E.S., CHAUDHARI, M. Phtocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. In: Desalination, 2010, no.252, p.46–52. http://dx.doi.org/10.1016/j.desal.2009.11.003

KANSAL, S.K., KUNDU, P., SOOD, S., LAMBA, R. Photocatalytic degradation of antibiotic levofloxacin using well-crystalline TiO2 nanoparticles. In: New J. Chem., 2014, no.38 (7), p.3220–3226. http://dx.doi.org/10.1039/C3NJ01619F

SHAYKHI, Z.M., ZINATIZADEH, AA. Statistical modelling of photocatalytic degradation of synthetic amoxicillin wastewater (SAW) in an immobilized TiO2 photocatalytic reactor using response surface methodology (RSM). In: J. Taiwan Inst. Chem., 2014, no.45(4), p.1717–1726. http://dx.doi.org/10.1016/j.jtice.2013.12.024

MOOSAVI, F.S., TAVAKOLI, T. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM). In: Environ. Sci. Pollut. Res., 2016, no.23, p.23262–23270. http://dx.doi.org/10.1007/s11356-016-7349-y

SAFARI, G.H., HOSEINI, M., SEYEDSALEHI, M., KAMANI, H. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. In: Int. J. Environ. Sci. Technol., 2015, no.12, p.603-616. http://dx.doi.org/10.1007/s13762-014-0706-9

KLAUSON, D., BABKINA, J., STEPANOVA, K., KRICHEVSKAYA, M., PREIS, S. Aqueous photocatalytic oxidation of amoxicillin. In: Catal. Today, 2010, no.151, p.39–45. http://dx.doi.org/10.1016/j.cattod.2010.01.015.

GARCIA, J.C., OLIVEIRA, J.L., SILVA, A.E., OLIVEIRA, C.C. Comparative study of the degradation of real textile effluents by photocatalytic reaction involving UV/TiO2/H2O2 and UV/ Fe2+/H2O2 systems. In: Journal Hazardous Materials, 2007, no.147, p.105-110. https://doi.org/10.1016/j.jhazmat.2006.12.053


Refbacks

  • There are currently no refbacks.